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Abstract. The spectrum of the Dime Hamiltonian H D  has a positive and a negative 
pa*, the first corresponds 10 the energy levels of the electmn, the second 10 minus 
the energy levels of the positron. The Foldy-Wouthuysen vansformation is a toal to 
obtain a decomposition of HI, in a direct sum Ho = He- a - H e + ,  where He- is 
~iir ~ U I I I I V I I I I I I I  "1 LWS E I C - ~ ~ L L U I I  aiiu ne+ i\ ihai ili iiie p i i r o n .  L'nioriunaieiy, Chis 
demmposition has been obtained in a closed form only when lhe aternal field b purely 
magnetic, while, in the presence of an electric field, only a perturbalive expansion is 
available. 

In this paper we give a path integral representation of lhe semigroup 4( t ,  t) = 
a p { - ( t / h ) H , - ) + o ( z )  in an external electromagnetic field. Our formula b the 
relativistic version, for Dirac panicles, of the well known Feynman-Kaoltd formula 
for Schd inge r  semigroups. The result wn also be regarded as a tool 10 obtain the 
demmposition H D  = He- -He+ even in the presence of a non-trivial electric field. 

.L̂  .,-.-:,.--:-- -* .L. .I .-... ..> Tr . 

1. Introduction 

The Feynman-Kac formula 1121 is a path integral representation of the semigroup 
$(i ,zj  = exp{-(iiirj~Y~j$~(z) where Hs is a SchrBdinger iiamiiionian. Due to 
its smoothing properties, the Hamiltonian semigroup is a far more useful object than 
the unitary group $ ( t , z )  = exp{-i(t/h)H,)$,(z) which provides the (real) time 
evolution of the quantum system (see [3] for a discussion about this important point), 
hence the interest in working in the Euclidean region. The Feynman-Kac formula 
fully controls the Schrodinger semigroup and it is, therefore, a powerful tool with 

for instance, [3-51). 
Finding an analogous path integral representation of the Dirac propagator for real 

or imaginary time has been an open problem for a long time. Historically, the first 
approaches were based on Zigzag paths in spacetime along which the Dirac particle 
travels at the speed of light. This idea goes back to Feynman and Riazanov [6,7] 
but, in spite of many improvements [8-171, it has not given a completely satisfactov 
answer to the problem. In some of these papers, in fact, additional assumptions are 
requested (for example analytic continuation of constants such as electron mass and 
light speed, or a lattice version of the spacetime). Furthermore, these approaches, 
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which io ohsi!! i!n.n.formarinn on the spectrum and on the eigenf??nr!ions of I f s  (see, 
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which rely on the paths of ordinary stochastic processes in 1 + 1 dimensions, need 
paths of non-commuting variables in the (1  + 3)-dimensional case (see [ll]). 

The papers [16,17] in which a probabilistic representation of ~ ( t , z )  = 
exp {-i(i/h)HD}&(z) without analytical continuation of constants or discretizations 
is given merit special mention. The result holds for an electron in an external 
electromagnetic field in 1 + 1 dimensions; furthermore, it has been extended to 1 + 3 
dimensions in special cases (for example central electric fields and spherical symmetric 
wavefunctions). 

Our approach is radically different because we think that the correct semigroup 
(we work in the Euclidean region) to be considered should not directly involve the 
Dirac Hamiltonian, but only its positive part. It is well known that the spectrum of 
the Dirac Hamiltonian H ,  has a positive and a negative part, the first corresponding 
to the energy levels of the electron, the second to minus the energy levels of the 
positron. By means of the Foldy-Wouthuysen transformation [18], one can obtain, in 
principle, a decomposition of H D  as a direct sum H ,  = He- €8 - H e + ,  where He- 
is the Hamiltonian of the electron and He+ is that of the positron. This task can be 
performed in a closed form only when the external field is purely magnetic [19]. In 
this case one has the explicit operator He- and can try to relate it to a generator of 
a stochastic process. This is exactly what we did in a previous paper [20] where we 
found a probabilistic representation involving diffusions and a Poisson process. 

Unfortunately, when the electric field is not trivial, the Foldy-Wouthuysen 
transformation gives the Hamiltonian of the electron only as a perturbative expansion. 
This means that the operator He- is not explicitly known in a closed form and the 
previous method, which worked in the purely magnetic case, can no longer be used. 
In this paper we bypass the problem and we give a path integral representation 
of the semigroup + ( t , z )  = exp { - ( t / h )  H e - } + " ( z )  which defines, albeit implicitly, 
the operator He- in a non-perturbative way. Our path integral representation is 
still based on diffusions in the (Euclidean) spacetime and on a Poisson process which 
takes care of the spin of the particle. It holds for electrons in external electromagnetic 
fields which are only supposed to be not strong enough to eliminate the energy gap 
between the two halves of the Dirac spectrum (see [21,22] for a discussion of this 
point). Our previous result for electrons in a purely magnetic field are found as a 
particular case. 

Since the same method can be used to obtain the semigroup associated with the 
positron Hamiltonian, our technique can also be regarded as a general tool with 
which to obtain the decomposition H, = He- €8 -He+ in a compact form. It turns 
out that our He- is unitarily equivalent to the electron Hamiltonian which can be 
obtained from the Foldy-Wouthuysen transformation. 

The paper is organized as follows: in section 2 we describe the path integral 
representation for the semigroup + ( t , z )  = exp{-(t/h)He-}+"(z) without proof. 
In section 3 we discuss the single electron Hilbert space associated with the 
Hamiltonian He- in our representation. In section 4 we compare our result with 
similar results for spinless relativistic particles and we discuss the non-relativistic 
limit. The proof is divided into two parts, contained in the appendices A and B. 

G F De Angelis and M Serva 

2. The formula 

Our starting point is the (Euclidean) Dirac equation in four spacetime dimensions 
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where H ,  is the usual Dirac Hamiltonian 

HD = c a .  (-ihV - e a )  + mc’p + eA,. ( 2 4  

Here A and A, are the (time independent) electromagnetic potentials in the gauge 
V . A = 0 and the four matrices Q and p are taken in the spinorial representation: 

a = ( ;  -?) p = ( l  0 1  o) 
(2.3) 

(the us are the Pauli matrices). It is well known [U] that the first-order equation 
(Zl), for the four-component spinor +, is completely equivalent to a second-order 
equation for a Pauli spinor b. In fact. by decomposing 1L as 1L = (!I, where b and 
x are two Pauli spinors, equation (2.1) splits into the pair 

a+ 
at 
ax 
at 

h- = C O .  (ihV + .A)+- mc2X - eA,+ 

h- = - c u .  (ihV + eA)X - mc2+ - eA,X. 
(2.4) 

The first of these two equations can be rewritten in the form 

x=-- - cu . (ihV + e a )  + ea,] 4 (2.5) 

and gives x in terms of 4. Substituting x in the second equation (and dividing by 
Lmc-n) one MS me (cucmean) i-eynman anu veil-mann equation: A 7 - L  .~~ ~ .~ ~ ~ _.~. ,_~~...* ~ ~ ~ . >  .-a ”... . ,~ 

- h Z h  2 mc2 - - 2mc2 (”+ at :Au) ++ 2m (V - i i A )  + -  - & + u . F +  

(2.6) 

b\eiefoie, .we tave ;kc proa;em 
where E = -VA, and B = V x A are the electric and magnetic fields. Any solution 

of finding the positive energy solutions of (2.6). Fwtunately, we are in the Euclidean 
region where positive frequency solutions vanish exponentially when t + +OO while 
the negative ones explode. Therefore, we add to the boundaly condition 

(Z,Sj, ji.6j ij a =iiiiion of (2,ij ver36 

+(t = 072) = +U(=) (2.7) 
a further condition of regularity to the infinity, namely 

:++a lim b( t ,z)  =O. (2.8) 
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The solution of the Dirichlet problem (2.6), (2.7) and (2.8) is unique in the domain 
t > 0. In some sense, the condition on the behaviour at t = +m replaces the more 
usual condition (in the Minkowski region) which fixes the value of &$/at at the time 
t = 0 and it has the obvious advantage that (2.8) automatically selects the positive 
energy solutions. If the matrix A ( z )  = - h a .  F(z), which couples the components 
of 4, were diagonal, one could use a standard probabilistic formula [see 241 to solve 
the Dirichlet problem (2.6), (27), ( 2 4 ,  nevertheless, in our non-diagonal case, it 
is possible to generalize such a technique. The result is the following path integral 
representation (where the contribution of the rest energy has been isolated) 

G F De Angelis and M Serva 

+(t ,z)exp(mc'/f i t )  = exp { - ( ~ / W K -  - mc2) lh(z)  

with 

Here x: = (xs,z,) with z s  = z + m w , ,  x: = s + d m w :  (where 
(w: ,w , )  is a standard four-dimensional Brownian motion) and A, = (Ao,iA). The 
random variable r ( t )  is the stochastic time defined by ~ ( 1 )  = inf{s 0 :  x: = 1 )  = 
inf{s 2 0 : s + d m w s  = 1 )  (in other words ~ ( 1 )  is the first hitting time of 
1 by x:). Finally, M ( r )  is the (stochastic) 2 x 2 matrix which solves the first-order 
differential equation 

(dM(s)/ds) = -(l /h)M(s)A(z*) = M ( s ) a .  F ( z , )  (211) 

with the initial condition Maa(0)  = ~5,~. 
In this form, our path integral formula involves only diffusions and it reminds us 

of the Feynman-KaoItci formula for Pauli Hamiltonians [25]. The main difference 
lies in the fact that an extra Brownian motion w: appears in (2.9). the deterministic 
time t is replaced by the Markov time T ( t )  and, moreover, the matrix M ( T )  also 
depends on the electric field. The derivation of (2.9) is given in appendix A 

One final problem remains to be settled. The solution of the equation (2.11) is 
the anti-ordered exponential 

(2.12) 

defined as a product of exp -( l/fi)A(z8) d s  with increasing values of s from the left 
to the right. Unfortunately, this expression can only be made explicit when F ( z )  has 
a mnstant direction. In this case, in fact, the matrices A ( z * )  commute at different 
times and the anti-ordered exponential becomes an ordinaly one. It would also be 
useful to give a compact representation of (2.12) in the case in which F ( z )  is not 
constant in direction. This is indeed possible. Using a standard Poisson process 
N ( s ) ,  with a probability rate of jump equal to one, we have the following explicit 
formula for M ( T )  
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where the expectation 4.) is taken with respect to the Poisson process and 

log[F,(z,) +i(- l )N(s)Fz(zs)]  dN(s)}  (2.14) 

in which F,, Fz ,  F3 are the three components of the complex vector field F ( z ) .  
The derivation of (2.13), (2.14) is given in appendix B (see also 26). If we put this 
expression into (2.9), we get the solution of the Dirichlet problem, by means of a 
path integral representation for the semigroup 4 ( b , z )  = exp{-(t/h)H,-}+,(z), in 
the most general case. The contribution of the electromagnetic field is completely 
explicit since it is entirely contained in the factors exp-(S/h) and L,. It turns 
out that exp -( S / h )  takes into account the interaction of the particle with the field 
as if it were spinless, while the matrix M ( T )  contains the contributions due to the 
interaction of the spin with the magnetic and electric fields. 

Equations (2.13), (2.14) also hold when F ( z )  has a constant direction hut it 
will be convenient, in this case, to  insert directly (2.12) into (2.9). Consider for 
example an electron in a purely electric field with a constant direction (one can 
choose E ( z )  = (O,O, E 3 ( z ) ) ) .  It turns out, from (2.12), that 

where M ( T ( ~ ) )  is the diagonal matrix with upper and lower elements 

We obsewe that the matrix M ( T )  does not reduce to the identity. In fact, in the 
absence of a magnetic field, M ( r )  still accounts for the spin-orbit interaction. This 
is at variance with the non-relativistic case. 

3. The Hilbert space 

Using formula (2.5), which gives x in terms of 4, and the probabilistic formula (2.9), 
which gives 4 in terms of 4,. one can reconstruct all of the Dirac spinor 11. At this 
point, one could say that the task of giving a path integral solution of the imaginary- 
time Dirac equation has been accomplished. T ~ I S  IS indeed true, but, since we only 
look for positive energy solutions, we cannot give arbitraly boundary conditions for 
11 but we can only give initial conditions which satisfies (2.5). In contrast we have 
a positive energy solution of (2.6) for any boundary condition &(z). Therefore, 
it would be useful to redefine the electron Hilbert space. so that all the physical 
quantities can be calculated from the two-component Pauli spinor 4 only. For positive 
energy solutions of (2.6), one has h&$/at = - H e -  4 and formula (2.5) can be written 
as 

1 
m cz 

x = - [ H e -  + cu . (ihV + e a )  - eAJ+ 24 (3.1) 
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and .I as 
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rl= ( ; ) 4  

where (i) is a 4 x 2 matrix. The scalar product between two (positive energy) Dirac 
spinors +‘ and becomes 

(3.3) 

and the last equality defines the scalar product (4’14) between the corresponding 
Pauli spinors +’ and 4 

(4‘14) (4‘1(1+ z + z ) 4 )  (3:4) 

which, in turn, defines the electron Hilbert space in our representation. In other 
words, the eigenvectors of the Hamitonian He- are orthonormal with respect the 
metric (1 + z+z)  namely, if +,,, and $,, are two (normalized) eigenfunctions of the 
Dirac Hamiltonian HD with (positive) energies E, and E, respectively, then the 
corresponding Pauli spinor 4,,, and 4, satisfy 

(4’,,,14J = (4’,I(1 + Z + . ) 4 , )  = 8”. (3.5) 

It is easy to show that He- is Hermitian with respect to the scalar product (3.4), in 
other words that 

(4’1fL-4) = We-4’I4). (3.6) 

In fact, by definition 

and therefore 

(3.8) 

It is also possible to give the rule of tranformation for all operators 0, corresponding 
to electron physical observables, boom the Dirac representation to ours. One has 

Therefore, in our representation, the operator 0 becomes 

0’ = ( z’.) 0 (i) (1 + z+z)- ’ .  (3.10) 
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One would also know what is the link between our representation and the Foldy- 
Wothuysen one. In both representations there is a positive Hamiltonian for the 
electron, but, in the Foldy-Wouthuysen case, the scalar product defining the Hilbert 
space is the ordinary one. If we define 4 = J-4, we immediately see that 

(4%) = (4'1(1+ Z + Z ) 4 )  = (PI&. (3.11) 

- .  ins transformation gives the required iinic between our representation ana the Riay- 
Wouthuysen one. In particular, the electron Hamiltonian transforms as 

He- = ( l + z + ~ ) ' ~ ~ H , - ( l + z + z ) - ' ~ ~  (3.12) 

where f i e -  is the Foldy-Wouthuysen electron Hamiltonian (which is Hermitian with 
respect to the ordinary scalar product). The two operators f ie -  and He- have the 
same spectrum and, furthermore, coincide when the external field is purely magnetic. 
In this case, in fact, z and He- commute and one has (see [I9,20]) 

He- = c 2 ( u .  (%V + + "4. (3.13) 

The Hamiltonian semigroup for the positron can be obtained exactly in the same 
way by looking at the Dirichlet problem (2.6) in the domain t < 0. The result is a 
path integral representation which is identical to (2.9) except that the four-potential 
A@ is replaced by -A@.  A transformation analogous to (3.12) then gives the link with 
the positron Hamiltonian which emerges from the Foldy-Wouthuysen transformation. 

4. Discussion 

Formula (29) solves equation (2.6). The Klein-Gordon equation is very similar to 
(2.6) with only two differences: the matrix A is absent and the function 4 is a 
scalar. Therefore, the same argument that applies to positive energy solutions of 
n:.*" -...,+inn I:. fnrm /?&I\ .kn app!iPs ~ 5 -  ps;+Te frPqcPnF; p"!uticns nf Y l l P C  .q"'L'".l (.I, LUI... \A.",, Y."" 

Kleinsordon equation. One has, in fact, for the latter 

where M ( r ( 2 ) )  has disappeared. This result has already been reported in a previous 
paper [27, where a detailed discussion of the associated Hilbert space was also 
given. Some words about the non-relativistic limit of formulae (2.9) and (4.1) are 

int. We first remark that when e - +m the stochastic process 
Z! = s + (h/mc )tu: converges to the deterministic value s and, therefore, the 
stochastic time T (  t )  and the deterministic time t coincide in this limit. This fact was 
stated more precisely 1281. By subtracting the rest energy, formulae (2.9) and formula 
(4.1) becomd, respeitiveh, in the non-relativistic limit 
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and 
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S ( t )  is now 

S ( t )  = ie I' A(z,) .  dz, + e I' Ac(z8)ds  
Ju Ju 

(4.4) 

because the integration with respect to dz: has been replaced by an integration with 
respect to s. The matrix M is still given by (2.12) but now only contains the magnetic 
field because F = (e/2m)(B + ( i /c )E)  reduces to ( e / 2 m ) B  in the non-relativistic 
limit. Formula (4.2) is precisely the Feynman-Kac-It6 formula for a non-relativistic 
electron described by a Pauli Hamiltonian (see [25,26]) and (4.3) is the Feynman- 
KacIt6 formula for a Schriidinger particle. When the magnetic field is absent both 
formulae reduce to 

which is rhe ordinaly kynman-fic formuia. 

Appendix A 

Formula (2.9) is obtained in this appendix by improving standard methods for the 

We start by defining the process s t-+ U(.) through U(.) = u(t - z!, 2.) where 
u ( t , z )  is a given two-component smooth function, regular for t - +m, and the 
spacetime diffusion s c (zt , 2,) is the same as the one which appears in all previous 
formulae. From ItG's lemma, one has (here h = m = c = 1) 

probabilistic solution of Dirichlet problems p4j. 

au au 1 a2u 1 
d u = V u . d w ,  - - d w ~ - - d s + - - d s + - A u d s .  (kl) at at 2 at2 2 

In the same way, C(s) = exp-S(s), where S(s) is defined by (2.10), satisfies 

dC(s )  = -C(s)(ieA(z,) .dw,  + eAu(z,)dwy+ 

+ eAu(z,)ds  + ie21A(z,)lZds - te2A:(z,)ds) (A21 

where we have explicitly made use of our choice of gauge. By defining D ( s )  as 
D ( s )  = exp -zs, one also has 

d D ( s )  = -D(s) (dwt  + i d s )  (A3) 

and finally M ( s ) ;  defined by (2.12); is differentiable in the ordinary sense and, 
therefore 

d M ( s )  = -M(s)A(z , )ds .  (k4)  
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From these four stochastic differentials one obtains 

d ( M ( s ) C ( s ) D ( s ) 4 S ) )  

1 1 
2 = M ( s ) C ( s ) D ( s )  - ieA)'u - -U  - A u  d s  

+ M ( s ) C ( s ) D ( s )  du: + (Vu - ieAu)dw, . 
(A.5) 

1 
The integration of this identity between 0 and r ( t )  = inf{s 
the formula 

0 : z: = t) provides 

M ( r ( t ) ) C ( r ( t ) ) u ( O , z ~ ( l ) )  expt-t) 

1 
2 

+ -(V - ieA)'u - 

(-4.6) 1 dwt + (Vu - ieAu) . dw, 

where we have exploited the equalities u ( r ( t ) )  = u ( t  - zy( t l ,~r ( t ) )  = u(O,z,(,)) 
and D(r (1) )  = e x p { - 1 )  because, zYtt) = t by definition. We now take the 
expectation of this equality. If the upper integration limit were a number, the 
expectation containing It6's integral would wnish. This property of It6 integrals 
still holds if the upper integration limit is a Markov time with finite expectation, a 
class which includes r ( t ) .  We have, therefore, 

I E ( M ( r ( t ) ) u ( O , Z , ( , ) ) C ( r ( t ) ) )  a P t - t l  

= u(1,z)  + E( J I r C t )  M ( s ) C ( s ) D ( s )  

1 

Now, if u(1, z) satisfies the equation: 

Z ( a t + e A U ) 2 u + ~ ( V - i e A )  i a  2 1  u - - u - A u = O  
2 

for t > 0, then the equality (A.7) reduces to 

u ( t , z )  exp 1 = I E ( M ( T ( ~ ) ) Z L ( ~ , ~ , ( ~ ) ) C ( ~ ( ~ ) ) )  (A.9) 

which coincides with (2.9) when the dimensional constants tl, c and m are explicitly 
inserted. 
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Appendix B 

In this appendix we show that the stochastic matrix M (  s), given by the probabilistic 
formula (2.13), satisfies the differential equation (2.11). We first rewrite all expressions 
in a scalar form. After having defined 

G F De Angelis and M Serva 

(2.13) becomes 

where a and b rake the values *1 and, therefore, M (  a,  b, T )  represents the four 
entries of M ( s ) .  In order to find the differential equation satisfied by M ( s )  we 
rewrite this expression for a larger time s + As. We have 

A T  

x exP (1 b3[F1(Zr+,) 

+ i~(-l)~c~)(-l)~'~~)F~(z~+~)] dN'(s) )I (B.3) 
)l 

where, for T 6 s 6 T+AT N ( s )  = N ( T ) + N ( S ) - N ( T )  z N(T)+"(s-T). The 
processes N and N' are independent and one can rake the expectation with respect 
to N'. In order to calculate this expectation, it is sufficient to use three facts: first, 
in the inlinitesimal time interval As, the process N' makes a jump with probability 
A T  and no jumps with probability 1 - AT; second, the expectation contains the 
factor 11 + ~ b ( - l ) ~ ( ~ ) ( - l ) " ( ~ ~ ) ]  which enforces the value b for ~ ( - l ) ~ ( - )  when 
no jumps occur and -b in the case of a jump; and third, the stochastic integral 

A7 1 log[ F, ( z7+&) + ia( -l)N(r)(  -l)"(') Fz(z.+,)] dN'( s) (B.4) 

is zero when there is no jump and takes the value 

Iog[Fl(z,) + i u ( - ~ ) ~ ( ~ ) ~ ~ ( z ~ ) ]  
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when there is a jump (the Poisson process s Y N (  S )  is assumed to be left-continous). 
Therefore, formula (B.3) becomes 

M ( a ,  b , r  + A T )  = (1 + bF3AT)M(a ,  b , r )  + ( F ,  - i b & ) M ( a ,  b , r ) A r  

and, by remembering that the matrix A is given by 

(B.6) 

one can see that equations (B.6) and (2.11) coincide, 
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