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Abstract. The spectrum of the Dirac Hamiltonian Hp has a positive and a negative
part, the first corresponds to the energy levels of the electron, the second to minus
the energy levels of the positron. The Foldy-Wouthuysen transformation is a tool to
obtain a decomposition of Hp in a direct sum Hp = H._ & —~H 4, where H_ is
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decomposition has been obtained in a closed form only when the external field is purely
magnetic, while, in the presence of an electric field, only a perturbative expansion is
available.

In this paper we give a path integral representation of the semigroup ¢(z,t) =
axp{—(t/h)H - }¢po(x)} in an extemnal clectromagnetic field. Our formula is the
relativistic version, for Dirac particles, of the well known Feynman-Kac-Ité formula
for Schrodinger semigroups. The result can also be regarded as a tool to obtain the
decomposition Hp = H_— @ — H_4 even in the presence of a non-trivial electric field.

1. Introduction

The Feynman-Kac formula [1,2] is a path integral representation of the semigroup
(i, x) = exp{—(i/h) Hg}y(x) where Hg 15 a Schrédinger Hamiitonian. Due to
its smoothing properties, the Hamiltonian semigroup is a far more useful object than
the unitary group 1(t,z) = exp {—i(t/h) Hg}y(x) which provides the (real) time
evolution of the quantum system (see [3] for a discussion about this important point),
hence the interest in working in the Euclidean region. The Feynman-Kac formula

fully controls the Schrodinger semigroup and it is, therefore, a powerful tool with
which to obtain information on the spectrum and on the eigenfunctions of H. fees
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for instance, [3-5]).

Finding an analogous path integral representation of the Dirac propagator for real
or imaginary time has been an open problem for a long time. Historically, the first
approaches were based on zigzag paths in spacetime along which the Dirac particle
travels at the speed of light. This idea goes back to Feynman and Riazanov [6,7]
but, in spite of many improvements [8-17}, it has not given a completely satisfactory
answer to the problem. In some of these papers, in fact, additional assumptions are
requested (for example analytic continuation of constants such as electron mass and
light speed, or a lattice version of the spacetime). Furthermore, these approaches,
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which rely on the paths of ordinary stochastic processes in 1 + 1 dimensions, need
paths of non-commuting variables in the (14 3)-dimensional case (see [11]).

The papers [16,17] in which a probabilistic representation of (t,z) =
exp {—i(¢/h) H p } 1, (=) without analytical continuation of constants or discretizations
is given merit special mention. The result holds for an electron in an external
electromagnetic field in 14 1 dimensions; furthermore, it has been extended to 1+ 3
dimensions in special cases (for example central electric fields and spherical symmetric
wavefunctions).

Our approach is radically different because we think that the correct semigroup
(we work in the Euclidean region) to be considered should not directly involve the
Dirac Hamiltonian, but only its positive part. It is well known that the spectrum of
the Dirac Hamiltonian Hp has a positive and a negative part, the first corresponding
to the energy levels of the electron, the second to minus the energy levels of the
positron. By means of the Foldy-Wouthuysen transformation [18], one can obtain, in
principle, a decomposition of Hp, as a direct sum Hp = H__ & — H_,, where H,_
is the Hamiltonian of the ¢lectron and H,, is that of the positron. This task can be
performed in a closed form only when the external ficld is purely magnetic {19). In
this case one has the explicit operator H,_ and can try to relate it to a generator of
a stochastic process. This is exactly what we did in a previous paper [20] where we
found a probabilistic representation involving diffusions and a Poisson process.

Unfortunately, when the electric field is not trivial, the Foldy-Wouthuysen
transformation gives the Hamiltonian of the electron only as a perturbative expansion.
This means that the operator H,_ is not explicitly known in a closed form and the
previous method, which worked in the purely magnetic case, can no longer be used.
In this paper we bypass the problem and we give a path integral representation
of the semigroup ¢(t,z) = exp {—(t/h) H.- }¢,(=) which defines, albeit implicitly,
the operator H.. in a non-perturbative way. Our path integral representation is
still based on diffusions in the (Euclidean) spacetime and on a Poisson process which
takes care of the spin of the particle. It holds for electrons in external electromagnetic
fields which are only supposed to be not strong enough to eliminate the energy gap
between the two halves of the Dirac spectrum (see [21,22] for a discussion of this
point). Our previous result for electrons in a purely magnetic field are found as a
particular case.

Since the same method can be used to obtain the semigroup associated with the
positron Hamiltonian, our technique can also be regarded as a general tool with
which to obtain the decomposition Hp, = H.- & —H_, in a compact form. It turns
out that our H_. is unitarily equivalent to the electron Hamiltonian which can be
obtained from the Foldy-Wouthuysen transformation.

The paper is organized as follows: in section 2 we describe the path integral
representation for the semigroup ¢(t,z) = exp{—(t/h)H,- }¢y(x) without proof.
In section 3 we discuss the single electron Hilbert space associated with the
Hamiltonian H, in our representation. In section 4 we compare our result with
similar results for spinless relativistic particles and we discuss the non-relativistic
limit. The proof is divided into two parts, contained in the appendices A and B.

2. The formula

Our starting point is the (Euclidean) Dirac equation in four spacetime dimensions
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where Hp, is the usual Dirac Hamiltonian

= ~Hp¥ | @1)

Hp = ca - (~=ihV — eA) + mc* G + eA,,. 2.2)

Here A and A, are the (time independent) electromagnetic potentials in the gauge
V- A =0 and the four matrices  and S are taken in the spinorial representation:

n(55) a1

(the os are the Pauli matrices). It is well known [23] that the first-order equation
(2.1), for the four-component spinor ¥, is completely equivalent to a second-order
equation for a Pauli spinor ¢. In fact, by decomposing v as ¢ = ( i), where ¢ and
x are two Pauli spinors, equation (2.1) splits into the pair

12% — o (ihV + eA)d — mely — e Ayd
o1 29
% = —~co - (IhV + ed)x — melp — eAyx.
The first of these two equations can be rewritten in the form
= _ 1 58__ -(ihV + eA) Agl & 2.5
X = ;c—z- E ca € + €A ( o )

and gives x in terms of ¢. Substituting x in the second equation (and dividing by

2mc?h) one has the (Euclidean) Feynman and Gell-Mann equation:

k

2mc?

3 e k e )2 me? e i
('a“:"'EA") b+ 5 (V-iga) o - o+ 50 (B+;E)¢

h a8 e 2 k e 2 me?
= z( +EA°) 6 3 (V-igA) 6= Gréro-Fo

2me 5

Eofa eV ] e 2, met, 1
=2 (=4 — (v-is e ZA¢=
2m2(8t+hAU) ¢+2m(v 'nA)d’ 2 ¢ Fhe=0

(2.6)
where E = -V A and B = V x A are the electric and magnetic fields. Any solution
(2.5), (2.6) is a soiution of {2.1) and vice versa and, therefore, we have the problem
of finding the positive energy solutions of (2.6). Fortunately, we are in the Euclidean

region where positive frequency solutions vanish exponentially when t — +oco while
the negative ones explode. Therefore, we add to the boundary condition

B(t = 0,2) = ¢y(=) 2.7
a further condition of regularity to the infinity, namely

Jm @t ) =0 @9
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The solution of the Dirichlet problem (2.6), (2.7) and (2.8) is unique in the domain
t > 0. In some sense, the condition on the behaviour at t = +oo replaces the more
usual condition (in the Minkowski region} which fixes the value of 8¢ /91 at the time
t = 0 and it has the obvious advantage that (2.8) automatically selects the positive
cnergy solutions. If the matrix A(x) = —fie - F(z), which couples the components
of ¢, were diagonal, one could use a standard probabilistic formula [see 24] to solve
the Dirichlet problem (2.6), (2.7), (2.8), nevertheless, in our non-diagonal case, it
is possible to generalize such a technique. The result is the following path integral
representation (where the contribution of the rest energy has been isolated)

P(t,z) exp (me? [ht) = exp {—(¢/R)(H.- — mc?)}gy(=z)
= B (M(r(0) dy(arcy) exp - 2D 9
with
S(r)=1ie /-r A(z,) -de, + e/T Au(aza)dmg = efT A, (z,)dxl. (2.103)
0 0 1}

Here z# = (2Y,2,) with 2, = = + /(B/m)w,, 2% = s + /(h/mc?)w! (where
(wd, w,) is a standard four-dimensional Brownian motion) and A, = (A",id). The
random variable 7(¢) is the stochastic time defined by 7(¢) = inf{s > 0:z! = ¢} =
inf{s > 0: s + +/(A/me?)w? = t} (in other words 7(¢) is the first hitting time of
t by ). Finally, M(7) is the (stochastic) 2 x 2 matrix which solves the first-order
differential equation

(AM(s)/ds) = —(1/K)M(s)A(=,) = M(s) - F(=,) @11)

with the initial condition M, g(0) = § 4.

In this form, our path integral formula involves only diffusions and it reminds us
of the Feynman-Kac-It6 formula for Pauli Hamiltonians [25]). The main difference
lies in the fact that an extra Brownian motion w! appears in (2.9), the deterministic
time ¢ is replaced by the Markov time 7(t) and, moreover, the matrix M(r) also
depends on the electric field. The derivation of (2.9) is given in appendix A.

One final problem remains to be settled. The solution of the equation (2.11} is
the anti-ordered exponential

M(r)=T* exp—% fu A(z,)ds 212)

defined as a product of exp —(1/A)A(=,) ds with increasing values of s from the left
to the right. Unfortunately, this expression can only be made explicit when F(«) has
a constant direction. In this case, in fact, the matrices A(z,) commute at different
times and the anti-ordered exponential becomes an ordinary one. It would also be
useful to give a compact representation of (2.12) in the case in which F(=) is not
constant in direction. This is indeed possible. Using a standard Poisson process
N(s), with a probability rate of jump equal to one, we have the following explicit
formula for M(7)

[+ DYOL(n) = (~)NOL(r)
M(")—E[(§1-(-1)N(T>Lf(7) -1;1+(—1)”(”Lt(r))] 1)



Brownian path integral from Dirac equation 6543

where the expectation () is taken with respect to the Poisson process and
Ly(r)= exp{j 1+ (-)HNO Fy(=,)] ds
o

+ frlog[Fl(zs) +i(-1)NE) Fy(2,)] dN(s)} (2.14)
[+

in which Fy, F;, Fy are the three components of the complex vector field F(z).
The derivation of (2.13), (2.14) is given in appendix B (see also 26). If we put this

_ expression into (2.9), we get the solution of the Dirichlet problem, by means of a
path integral representation for the semigroup ¢(¢,z) = exp {~(t/h) H.- }é4(x), in
the most general case. The contribution of the electromagnetic field is completely
explicit since it is entirely contained in the factors exp—(S/#%) and L,. It turns
out that exp —(S/k) takes into account the interaction of the particle with the field
as if it were spinless, while the matrix M (7) contains the contributions due to the
interaction of the spin with the magnetic and electric fields.

Equations (2.13), (2.14) also hold when F(x) has a constant direction but it
will be convenient, in this case, to insert directly (2.12) into (2.9). Consider for
example an electron in a purely electric field with a constant direction (one can
choose E(z) = (0,0, E;(2))). It tumns out, from (2.12), that

c? e [T
<zs(t,au)exp{"‘,i }t=E(M(T(t))%(zr(z))exp{—g / Au(zs)drz}) @15

where M(7(t)) is the diagonal matrix with upper and lower elements

I rr{t)

( \
M(£1,£1,7()) = expiiz—;—i—éju E3(:us)ds} . (2.16)

We observe that the matrix M{r) does not reduce to the identity. In fact, in the
absence of a magnetic field, M () still accounts for the spin-orbit interaction. This
is at variance with the non-relativistic case.

3. The Hilbert space

Using formula (2.5), which gives x in terms of ¢, and the probabilistic formula (2.9),
which gives ¢ in terms of ¢;, one can reconstruct all of the Dirac spinor 1. At this
point, one could say that the task of giving a path integral solution of the imaginary-
time Dirac equation has been accomplished. This is indeed true, but, since we only
look for positive energy solutions, we cannot give arbitrary boundary conditions for
1» but we can only give initial conditions which satisfies (2.5). In contrast we have
a positive energy solution of (2.6) for any boundary condition ¢y(x). Therefore,
it would be useful to redefine the electron Hilbert space so that all the physical
quantities can be calculated from the two-component Pauli spinor ¢ only. For positive
energy solutions of (2.6), on¢ has i8¢ /8t = —H, ¢ and formula (2.5) can be written
as

1

— [H,- +co-(ihV + eA) —eAjl¢= 29 (3.1)

x:
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and ) as

w= (:,)d> 6.2)

where (:) is a 4 x 2 matrix. The scalar product between two (positive energy) Dirac
spinors ' and 1 becomes

wiw=(#(1)](1)¢)=w@a+sn0 6.3

and the last equality defines the scalar product {¢’|¢) between the corresponding
Pauli spinors ¢’ and ¢

(¢'I¢) B (¢'|(1+ 2 2)¢) (3:4)

which, in turn, defines the electron Hilbert space in our representation. In other
words, the eigenvectors of the Hamitonian F{,_ are orthonormal with respect the
metric (14 2% z) namely, if ¥, and 1, are two (normalized) eigenfunctions of the
Dirac Hamiltonian Hp, with (positive) energies E, and E, respectively, then the
corresponding Pauli spinor ¢,, and ¢, satisfy

(¢ mldn) = (¢'ml(L+ 2¥2),) = 6, (3-3)

It is easy to show that H._ is Hermitian with respect to the scalar product (3.4), in
other words that

(¢|He-¢) = (He-¢'16). (3.6)
In fact, by definition
HD¢=HD(1)¢= (1) H.-¢ 3.7

and therefore
W9 =@+ amea= (o 1)] (1) o)
= (#(2)] (1) o) = (¢ (2

1
(¢ (%) 8o (1)e)= o)

(3.8)
It is also possible to give the rule of tranformation for all operators O, corresponding
to electron physical observables, from the Dirac representation to ours. One has

wion = (¢ (1)

Therefore, in our representation, the operator O becomes

o' = (zﬂ)o(i)(uzu)-l. (3.10)

o (i) (14 2zt2)"11 4 z+z)qb) . (3.9)



Brownian path integral from Dirac equation 6545

One would also know what is the link between our representation and the Foldy-
Wothuysen one. In both representations there is a positive Hamiltonian for the
electron, but, in the Foldy-Wouthuysen case, the scalar product defining the Hilbert
space is the ordinary one. If we define ¢ = /T + zTz¢, we immediately see that

(¢'16) = (¢'|(1+ 2+ 2)$) = ($|). (3.11)

This transformation gives the required iink between our representation and the Foidy—
Wouthuysen one. In particular, the electron Hamiltonian transforms as

=142t 2)VEH, (1 4 2t 2)" 12 (3.12)

where H,. is the Foldy—-Wouthuysen electron Hamiltonian (which is Hermitian with
respect to the ordinary scalar product). The two operators H,. and H, have the
same spectrum and, furthermore, coincide when the external field is purely magnetic.
In this case, in fact, z and H_. commute and one has (see [19, 20])

H, = \/cHo - (Y + e4))? + m2ct, (3.13)

The Hamiltonian semigroup for the positren can be obtained exactly in the same
way by looking at the Dirichlet problem (2.6) in the domain ¢ < 0. The result is a
path integral representation which is identical to (2.9) except that the four-potential
A# is replaced by — A#. A transformation analogous to (3.12) then gives the link with
the positron Hamiltonian which emerges from the Foldy—Wouthuysen transformation.

4. Discussion

Formula (2.9) solves equation (2.6). The Klein—-Gordon equation is very similar to
(2.6) with only two differences: the matrix A is absent and the function ¢ is a
scalar. Therefore the same argument that applies to positive energy solutions of

Dir: annatinn fr 2.60) also anplies to the nositive frequency solutions of
1rac cquation \u; I0Im (£.0)) app W W posi cquenty scautions of
Klein—Gordon equation. One has, in fact, for the latter
2
me S(r()
¢>(t,z)exp{T}t=]E(q&o(z,.(t))exp {—'(—ﬁ(—)“}) (4.1)

where M((t)) has disappeared. This result has already been reported in a previous
paper [27], where a detailed discussion of the associated Hilbert space was also
given. Some words about the non-relativistic limit of formulae (2.9} and (4.1) are
in order at this point. We first remark that when ¢ — +oc the stochastic process
) = s+ /(h/mc?)w’ converges to the deterministic value s and, therefore, the
stochastic time r(¢) and the deterministic time ¢ coincide in this limit. This fact was
stated more precisely [28]. By subtracting the rest energy, formulae (2.9) and formula
{4.1) become, respectively, in the non-relativistic limit

s(t,0) =B ( Moz e - 22 1) “2)
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and

a(t,m) =& (dn(ep exp { - 52 }) @3

S(t) is now

S(t) = [ -dx, +eJ[ Ap(z ) ds 4.4
Jo

because the integration with respect to dz? has been replaced by an integration with
respect to s. The matrix M is still given by (2.12) but now only contains the magnetic
field because F = (e/2m)}{(B + (i/ c) E) reduces to (e/2m)B in the non-relativistic
limit. Formula (4.2) is precisely the Feynman—Kac-It6 formula for a non-relativistic
clectron described by a Pauli Hamiltonian (see [25,26]) and (4.3) is the Feynman—
Kac-It6 formula for a Schrodinger particle. When the magnetic field is absent both
formulae reduce to

s,z =8 (antepep {5 [ Az as}) @s)

which is the ordinary Feynman-Kac formuia.

Appendix A

Formula (2.9) is obtained in this appendix by improving standard methods for the
probabilistic solution of Dirichlet problems [24].

We start by defining the process s — u(s) through u(s) = u(t-z%,z,) where
u(t,z) 8 a given two-component smooth function, regular for £ — +oo, and the
spacetime diffusion s v (x%, z,) is the same as the one which appears in all previous

formulae. From It6’s lemma, one has (here A=m=c=1)

du, , Ou 18%u

= ~—— - d 1
du = Vu-dw, Btd’ Btds+26t2d+ Aus (A1)
In the same way, C'(s) = exp—S(s), where S(s) is defined by (2.10), satisfies

dC(s) = —C(s)(ieA(z,) - dw, + e Ay(=,) dwi+ |
+ eAy(z,)ds + %ezlA(wa)lzds - %ezAﬁ(a:s) ds) (A.2)

where we have explicitly made use of our choice of gauge. By defining D(s) as
D(s) = exp—=zY, one also has

dD(s) = -~ D(s)(dw? + 1ds) (A.3)

and finally M{(s), defined by (2.12), is differentiable in the ordinary sense and,
therefore

dM(s) = ~M(s)A(=,)ds. (A.4)



Brownian path integral from Dirac equation 6547

From these four stochastic differentials one obtains
d(M(s)C(s)D(s)u(s))

2
= M(s)C(s)D(s) |:;- (% + eAu) u+ %(V —ied)?u — %u - Aul ds

+ M(s)C(s)D(s) [— (%% +eAju — u) dw? + (Vu - ieAu)dw,,:I .
(A-5)

The integration of this identity between 0 and 7(¢) = inf{s > 0 : 2% = ¢} provides
the formula

M(7())C(r(1))u(0,2,()) exp{—t}
(1) 1/8 g
:u(t,z)-l-»fn M(s)}C(s)D(s) [i(a-l-e/lu) u
+ -;—(V - ieA)zu - %u - Au] ds
(1)
+ /0 M(s)C(s)D(s)

x [— (% +edyu— u) dw! + (Vu —iedu) - dws:l (A.6)

where we have exploited the equalities u(7(f)) = u(t — ;c‘i(t),zf{t)) = u(0,2,¢;)
and D(7(t)) = exp{—t} because, a:ﬂm = t by definition. We now take the
expectation of this equality. If the upper integration limit werc a number, the
expectation containing It6’s integral would vanish. This property of [t6 integrals
still holds if the upper integration limit is a Markov time with finite expectation, a
class which includes ~(t). We have, therefore,

E(M{(r())u(0,2,,))C(r (1)) exp{—1}
(1)

= u(t,a:)-l»IE( : M(s)C(s)D(s)

102 4 oa)us v —ieafu—tur aul as AT
xié-t_e“u+2( e)uzuu . (AT)
Now, if u(t¢,z)} satisfies the equation:
2
, 1
%(%+8AU)u+%(V—leA)2u—iu—Au=0 (A.8)

for ¢ > 0, then the equality (A.7) reduces to
u(t,z) expt = E(M(r(t))u(0, 2,y }C(T(t))) (A9)

which coincides with (2.9) when the dimensional constants &, ¢ and m are explicitly
inserted.
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Appendix B
In this appendix we show that the stochastic matrix M (), given by the probabilistic

formula (2.13), satisfies the differential equation (2.11). We first rewrite all expressions
in a scalar form. After having defined

_{ M(1,1,7) M(1,-1,7)

M(r) = (M(—l, 1,7) M(—»l,—l,r)) ®1

(2.13) becomes
- {r) T
Mab,r) = 2D e { [T o)™ By e, 105}
0
xep{ [ glF(a,) +ia(-1O RN |) ®2)
1]

where ¢ and b take the values +1 and, therefore, M(a,b, T) represents the four
entries of M(7). In order to find the differential equation satisfied by M(r) we
rewrite this expression for a larger time = 4+ Ar. We have

. /\... (1+ab( I)N(r)( I)N (A1)
9 T Ml 2

X exp{ 1+ a(-1D)VE Fy(a,)] ds}

M(a,b

xap{ [ loglFi(a,) +ia(-1)N Fy(e, )] aN () |

X exp [1 + a(-l)N(T)(—l)N’(3>Fs(mm)} ds}

xexv{ /U log[Fi(=,,)
+ia(DYO (DY O Fy(a,, ) AV ()] ®3)

where, for r < s S 7+AT N(8) = N(r)+ N(s)-N(r)= N(r)+ N'(s—r1). The
processes N and N’ are independent and one can take the expectation with respect
to N'. In order to calculate this expectation, it is sufficient to use three facts: first,
in the infinitesimal time interval A, the process N’ makes a jump with probability
AT and no jumps with probability 1 — Ar; second, the expectation contains the
factor (14 ab(=1)N(")(~1)™'(47}] which enforces the value b for a(—1)V(*) when
no jumps occur and —b in the case of a jump; and third, the stochastic integral

aAr
/ log[Fl(zr+s) + ia(—l)N(T)(-l)N (&) FZ(IT-}-‘;)} dN'(S) (84)
0
is zero when there is no jump and takes the value

g Fi(=,) + ia(~1)V) Fy(s,)] (B.5)
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when there is a jump (the Poisson process s — N(s) is assumed to be left-continous).
Therefore, formula (B.3) becomes

M(a,b, 7+ Ar) = (14 bF,AT)M(a,b,7) + (F, — bF)M(a,b,7)Ar  (B.6)

and, by remembering that the matrix A is given by

—_ F3 Fl"iF2

one can s¢e that equations (B.6) and (2.11) coincide.
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